A hipótese de De Broglie
Em 1924, Louis-Victor de Broglie formulou a hipótese de Broglie, alegando que toda matéria[15][16] tem uma natureza ondulatória, ele relacionou comprimento de onda e momento:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
/
Esta é uma generalização da equação de Einstein acima, uma vez que o momento de um fóton é dado por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
,
onde c é a velocidade da luz no vácuo.
A fórmula de De Broglie foi confirmada três anos depois para elétrons com a observação da difração de elétrons em dois experimentos independentes. Na Universidade de Aberdeen, George Paget Thomson passou um feixe de elétrons através de um fino filme de metal e observou os padrões de interferência previstos. No Bell Labs, Clinton Joseph Davisson e Lester Halbert Germer guiaram o feixe de elétrons através de uma grade cristalina em seu experimento popularmente conhecido como experimento Davisson-Germer.
De Broglie foi agraciado com o Prêmio Nobel de Física em 1929 por sua hipótese. Thomson e Davisson dividiram o Prêmio Nobel de Física em 1937 por seu trabalho experimental.
Pode-se exprimir o princípio da incerteza nos seguintes termos:
O produto da incerteza associada ao valor de uma coordenada xi e a incerteza associada ao seu correspondente momento linear pi não pode ser inferior, em grandeza, à constante reduzida de Planck.[6] Em termos matemáticos, exprime-se assim:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde é a Constante de Planck (h) dividida por 2π.
A explicação disso não é fácil de se entender, e fala mesmo em favor da intuição, embora o raciocínio clássico e os aspectos formais da análise matemática tenham levado os cientistas a pensarem diferentemente por muito tempo. Quando se quer encontrar a posição de um elétron, por exemplo, é necessário fazê-lo interagir com algum instrumento de medida, direta ou indiretamente. Por exemplo, faz-se incidir sobre ele algum tipo de radiação. Tanto faz aqui que se considere a radiação do modo clássico - constituída por ondas eletromagnéticas - ou do modo quântico - constituída por fótons. Caso se queira determinar a posição do elétron, é necessário que a radiação tenha comprimento de onda da ordem da incerteza com que se quer determinar a posição.[7]
Neste caso, quanto menor for o comprimento de onda (maior frequência), maior será a precisão. Contudo, maior será a energia cedida pela radiação (onda ou fóton) em virtude da relação de Planck entre energia e frequência da radiação
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
e o elétron sofrerá um recuo tanto maior quanto maior for essa energia, em virtude do efeito Compton. Como consequência, a velocidade sofrerá uma alteração não de todo previsível, ao contrário do que afirmaria a mecânica clássica.
Argumentos análogos poderiam ser usados para se demonstrar que, ao medir-se a velocidade com precisão, alterar-se-ia a posição de modo não totalmente previsível.
A interação spin-órbita (mecânica quântica)
Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]
Assim, a função de onda total é escrita como uma função de produto.
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
(P)
A suposição feita acima implica que não existe interação entre L e S, i.e
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Neste caso, é uma auto-função de ambos e e portanto e são bons números quânticos; em outras palavras, as projeções de e são constantes do movimento.
Mas na verdade existe uma interação entre e chamada interação Spin-Órbita expressa em termos da grandeza .
Dado que não comuta quer com ou com , a equação (P) torna-se incorreta e e deixam de ser bons números quânticos.
Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.
No sistema de referência de repouso do electrão, há um campo eléctrico
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Onde dirige‐se do núcleo em direção ao electrão.
Assumindo que é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
No sistema de referência de repouso do electrão.
Portanto
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Com energia potencial
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
As equações acima são válidas no quadro de referência de repouso electrão.
A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[2]
Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
(T)
e por uma energia adicional dada por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.
De forma que
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
e então
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
A equação (T) torna-se então
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
E a energia adicional
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
O produto escalar
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Para spin = ½
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
A separação energética se torna então
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Para o potencial de Coulomb a separação energética pode ser aproximada por:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Onde
é o comprimento de onda de Compton
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
ou
Um resultado útil no cálculo é citado sem prova. O valor médio de i.e.
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
para
De modo que a separação energética se torna
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
para
Comentários
Postar um comentário