A hipótese de De Broglie

Em 1924, Louis-Victor de Broglie formulou a hipótese de Broglie, alegando que toda matéria[15][16] tem uma natureza ondulatória, ele relacionou comprimento de onda e momento:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

/

Esta é uma generalização da equação de Einstein acima, uma vez que o momento de um fóton é dado por


equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

 

onde c é a velocidade da luz no vácuo.



A fórmula de De Broglie foi confirmada três anos depois para elétrons com a observação da difração de elétrons em dois experimentos independentes. Na Universidade de AberdeenGeorge Paget Thomson passou um feixe de elétrons através de um fino filme de metal e observou os padrões de interferência previstos. No Bell LabsClinton Joseph Davisson e Lester Halbert Germer guiaram o feixe de elétrons através de uma grade cristalina em seu experimento popularmente conhecido como experimento Davisson-Germer.

De Broglie foi agraciado com o Prêmio Nobel de Física em 1929 por sua hipótese. Thomson e Davisson dividiram o Prêmio Nobel de Física em 1937 por seu trabalho experimental.








Pode-se exprimir o princípio da incerteza nos seguintes termos:

O produto da incerteza associada ao valor de uma coordenada xi e a incerteza associada ao seu correspondente momento linear pi não pode ser inferior, em grandeza, à constante reduzida de Planck.[6] Em termos matemáticos, exprime-se assim:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

onde  é a Constante de Planck (h) dividida por 2π.

A explicação disso não é fácil de se entender, e fala mesmo em favor da intuição, embora o raciocínio clássico e os aspectos formais da análise matemática tenham levado os cientistas a pensarem diferentemente por muito tempo. Quando se quer encontrar a posição de um elétron, por exemplo, é necessário fazê-lo interagir com algum instrumento de medida, direta ou indiretamente. Por exemplo, faz-se incidir sobre ele algum tipo de radiação. Tanto faz aqui que se considere a radiação do modo clássico - constituída por ondas eletromagnéticas - ou do modo quântico - constituída por fótons. Caso se queira determinar a posição do elétron, é necessário que a radiação tenha comprimento de onda da ordem da incerteza com que se quer determinar a posição.[7]

Neste caso, quanto menor for o comprimento de onda (maior frequência), maior será a precisão. Contudo, maior será a energia cedida pela radiação (onda ou fóton) em virtude da relação de Planck entre energia e frequência da radiação



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

e o elétron sofrerá um recuo tanto maior quanto maior for essa energia, em virtude do efeito Compton. Como consequência, a velocidade sofrerá uma alteração não de todo previsível, ao contrário do que afirmaria a mecânica clássica.

Argumentos análogos poderiam ser usados para se demonstrar que, ao medir-se a velocidade com precisão, alterar-se-ia a posição de modo não totalmente previsível.





A interação spin-órbita (mecânica quântica)

Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]

Assim, a função de onda total é escrita como uma função de produto.



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

 (P)

A suposição feita acima implica que não existe interação entre L e S, i.e



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Neste caso,  é uma auto-função de ambos  e  e portanto  e  são bons números quânticos; em outras palavras, as projeções de  e  são constantes do movimento.

Mas na verdade existe uma interação entre  e  chamada interação Spin-Órbita expressa em termos da grandeza .

Dado que  não comuta quer com  ou com , a equação (P) torna-se incorreta e  e  deixam de ser bons números quânticos. 

Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.

No sistema de referência de repouso do electrão, há um campo eléctrico



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Onde  dirige‐se do núcleo em direção ao electrão. 

Assumindo que  é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é: 



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

No sistema de referência de repouso do electrão.

Portanto



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Com energia potencial



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

As equações acima são válidas no quadro de referência de repouso electrão.

A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[2]

Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

 (T)

e por uma energia adicional dada por



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.

De forma que



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

e então



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

A equação (T) torna-se então



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

E a energia adicional



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

O produto escalar



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Para spin = ½



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

A separação energética se torna então



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Para o potencial de Coulomb a separação energética pode ser aproximada por:



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

Onde

é o comprimento de onda de Compton



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

 ou 

Um resultado útil no cálculo é citado sem prova. O valor médio de  i.e.



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

para 

De modo que a separação energética se torna



equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



/

para 

Comentários

Postagens mais visitadas deste blog